文章内容是10篇关于「七年级上册数学复习资料」的教学学习范文供大家借鉴参考,希望能帮助大家在教学学习中写初一数学复习资料相关文档的时候提供一个有效的参考,助你解决相关写作问题。
no.1 七年级上册数学复习资料-第1篇
第二章 整式的加减
2.1 整式
单项式:由数字和字母乘积组成的式子。系数,单项式的次数。 单项式指的是数或字母的积的代数式。单独一个数或一个字母也是单项式。因此,判断代数式是否是单项式,关键要看代数式中数与字母是否是乘积关系,即分母中不含有字母,若式子中含有加、减运算关系,其也不是单项式。
单项式的系数:是指单项式中的数字因数;
单项数的次数:是指单项式中所有字母的指数的和。
多项式:几个单项式的和。判断代数式是否是多项式,关键要看代数式中的每一项是否是单项式。每个单项式称项,常数项,多项式的次数就是多项式中次数的次数。多项式的次数是指多项式里次数项的次数,这里 是次数项,其次数是6;多项式的项是指在多项式中,每一个单项式。特别注意多项式的项包括它前面的性质符号。
它们都是用字母表示数或列式表示数量关系。注意单项式和多项式的每一项都包括它前面的符号。
单项式和多项式统称为整式。
2.2整式的加减
同类项:所含字母相同,并且相同字母的指数也相同的项。与字母前面的系数(≠0)无关。
同类项必须同时满足两个条件:(1)所含字母相同;(2)相同字母的次数相同,二者缺一不可。同类项与系数大小、字母的排列顺序无关
合并同类项:把多项式中的同类项合并成一项。可以运用交换律,结合律和分配律。
合并同类项法则:
合并同类项后,所得项的系数是合并前各同类项的系数的和,且字母部分不变;
字母的升降幂排列:按某个字母的指数从小(大)到大(小)的顺序排列。
如果括号外的因数是正(负)数,去括号后原括号内各项的符号与原来的符号相同(反)。
整式加减的一般步骤:
1、如果遇到括号按去括号法则先去括号。 2、结合同类项。 3、合并同类项
2.3整式的乘法法则 :
单项式与单项式相乘,把它们的系数、同底数幂分别相乘,其余字母连同它的指数不变,作为积的因式 ;
单项式和多项式相乘,就是用单项式去乘多项式的每项,再把所得的积相加。
多项式和多项式相乘,先用一个多项式的每一项乘另一个多项式的每一项,再把所得的积相加。
2.4整式的除法法则
单项式相除,把系数、同底数幂分别相除,作为商的因式,对于只在被除式里含有的字母,则连同它的指数作为商的一个因式。
多项式除以单项式,先把这个多项式的每一项除以这个单项式,再把所得的商相加。
no.2 七年级上册数学复习资料-第2篇
第三章 一元一次方程
1、 从算式到方程
方程是含有未知数的等式。
方程都只含有一个未知数x,未知数x的指数都是 ,这样的方程叫做一元一次方程。
就是求出使方程中等号左右两边相等的未知数的值,这个值就是方程的解。
2、等式的性质:
(1)。 等式两边加(或减)同一个数(或式子),结果仍相等。
(2) 等式两边乘同一个数,或除以同一个不为0的数,结果仍相等。
3、把等式一边的某项变号后移到另一边,叫做移项。(要移就得变)
4、在日历牌中,一个竖列上相邻两个数相差 , 的数比 的数大7;一个横行上相邻的两个数相差 , 的数比 的数大1。
5、常用体积公式:
长方形的体积=长x宽x ; 正方形的体积=边长x边长x边长 ;
棱柱的体积= x高; 圆柱的体积=底面积x ;
圆锥的体积= x高。
6、常用的相等关系:
(1)利润=售价- ;利润率=利润÷成本(进价)
(2) 利息=本金x利率x ; 本息和=本金 利息=本金x(1 利率x期数)
利息税=利息x税率=本金x利率x x ;
贷款利息=贷款金额x x 。
7、行程问题的主要类型及相等关系:
(1) 追及问题:甲乙同向不同地,则:追者走的路程=前者走的路程 两地间的距离。
(2) 问题:甲乙相向而行,则:甲走的路程 =总路程。
8、解应用题的关键是 。
no.3 七年级上册数学复习资料-第3篇
整式的加减。
1、单项式:在代数式中,若只含有乘法(包括乘方)运算。或虽含有除法运算,但除式中不含字母的一类代数式叫单项式。
2、单项式的系数与次数:单项式中不为零的数字因数,叫单项式的数字系数,简称单项式的系数;系数不为零时,单项式中所有字母指数的和,叫单项式的次数。
3、多项式:几个单项式的和叫多项式。
4、多项式的项数与次数:多项式中所含单项式的个数就是多项式的项数,每个单项式叫多项式的项;多项式里,次数最高项的次数叫多项式的次数;注意:(若a、b、c、p、q是常数)
5、整式:单项式和多项式统称为整式
整式分类
1、同类项:所含字母相同,并且相同字母的指数也相同的单项式是同类项。
2、合并同类项法则:系数相加,字母与字母的指数不变。
3、去(添)括号法则:去(添)括号时,若括号前边是“ ”号,括号里的各项都不变号;若括号前边是“-”号,括号里的各项都要变号。
4、整式的加减:整式的加减,实际上是在去括号的基础上,把多项式的同类项合并。
5、多项式的升幂和降幂排列:把一个多项式的各项按某个字母的指数从小到大(或从大到小)排列起来,叫做按这个字母的升幂排列(或降幂排列)。注意:多项式计算的最后结果一般应该进行升幂(或降幂)排列。
no.4 七年级上册数学复习资料-第4篇
第一章有理数
--------------1.1正数与负数
①大于0的数叫正数。
②在正数前面加上“-”号的数,叫做负数。
③0既不是正数也不是负数。0是正数和负数的分界,是的中性数。
④搞清相反意义的量:南北;东西;上下;左右;上升下降;高低;增长减少等。
⑤正整数、0、负整数统称整数(结合数轴和一元一次方程出题),正分数和负分数统称分数。整数和分数统称有理数。
⑥非负数就是正数和零;非负整数就是正整数和0。
⑦“基准”题:有固定的基准数,和的求法:基准数×个数 与基准数相比较的数的代数和;平均数的求法:基准数 与基准数相比较的数的代数和÷个数(写出原数,也可用小学知识解答);“非基准”题:无固定的基准数,如明天和今天比,后天和明天比。
-------------1.2数轴
①通常用一条直线上的点表示数,这条直线叫数轴。
②数轴三要素:原点、正方向、单位长度。
③数轴上的点和有理数的关系:所有的有理数都可以用数轴上的点表示出来,但数轴上的点,不都是表示有理数。
④只有符号不同的两个数叫做互为相反数(和为零)。(例:2的相反数是-2,如:2 (-2)=0;0的相反数是0)
⑤数轴上表示数a的点与原点的距离叫做数a的绝对值,记作|a|。
从几何意义上讲,数的绝对值是两点间的距离(无方向性,有两个点)。
⑥数轴上两点间的距离=|m—n|
⑥正数的绝对值是它本身;负数的绝对值是它的相反数;0的绝对值是0。
⑦两个负数,绝对值大的反而小。
⑧|a|≥0(即非负性);绝对值等于一个正数的值有两个(两个互为相反数)如:|a|=5,a=5或a=-5
-------------1.3有理数的大小
①数轴上不同的两个点表示的数,右边点表示的数总比左边点表示的数大。
②负数小于零,零小于正数,负数小于正数。
③两个负数的比较大小,绝对值大的反而小。
-------------1.4有理数的加减法
①有理数加法法则:
1、同号两数相加,取相同的符号,并把绝对值相加。
2、绝对值不相等的异号两数相加,取绝对值较大的加数的符号,并
用较大的绝对值减去较小的绝对值。互为相反数的两个数相加得0。
3、一个数同0相加,仍得这个数。
加法的交换律:a b=b a;加法结合律:(a b) c=a (b c)
②有理数减法法则:减去一个数,等于加这个数的相反数。
-------------1.5有理数的乘除法
①有理数乘法法则:两数相乘,同号得正,异号得负,并把绝对值相
乘。任何数同0相乘,都得0。
乘积是1的两个数互为倒数(积为1)如:(-2)×(-1/2)=1。
乘法交换律:a×b=b×a;结合律:a×(b×c)=(a×b)×c;
分配律:a×(b c)=a×b a×c(注意可逆的使用)。
②有理数除法法则:除以一个不等于0的数,等于乘这个数的倒数。
两数相除,同号得正,异号得负,并把绝对值相除。
0除以任何一个不等于0的数,都得0。
-------------1.6有理数的乘方
①求n个相同因数的积的运算,叫乘方,乘方的结果叫幂。在a的n次方中,a叫做底数,n叫做指数。负数的奇次幂是负数,负数的偶次幂是正数(负奇负,负偶正)。正数的任何次幂都是正数,0的任何次幂都是0。新-课-标-第-一-网
②偶次方等于一个正数的值有两个(两个互为相反数)如:a2=4,a=2或a=-2
注意:|a| b²=0得:a=0且b=0
强记:a0=1(a≠0);(-1)2=1;-12=-1;(-1)3=-1;
-13=-1;(-2)2=4;-22=-4;(-2)3=-8;-23=-8
③有理数的混合运算法则:先乘方,再乘除,最后加减;同级运算,
从左到右进行;如有括号,先做括号内的运算,按小括号、中括号、
大括号依次进行。注意:12-4×5=12-20(不能把-变 )
④把一个大于10的数表示成a×10的n次方的形式,使用的就是科学计数法,注意a的范围为1≤a<10;n比原整数位减1。(注意科学计数法与原数的互划。
⑤四舍五入到哪一位就是精确到哪一位,四舍五入时望后多看一位采用四舍五入。比如:3.5449精确到0.01就是3.54而不是3.55.(再如:2.40万:精确到百位;6.5×104精确到千位,有数量级和科学计数法的要还原成原数,看数量级和科学计数法的最后一个数)。
no.5 七年级上册数学复习资料-第5篇
第四章直线与角
-------------4.1几何图形
形状:方的、圆的等
(1)①几何图形大小:长度、面积、体积等
位置:相交、垂直、平行等
②几何体也简称体。包围着体的是面。
③常见的立体图形:圆柱(一曲面二平面)、圆椎(一曲面一平面)、圆台、球(一曲面)、长方体(六面八点十二棱)、四面体(三棱锥)、三棱柱(各部分不都在一个平面内,在一个平面内就是平面图形。)新课标第一网
④点线面体:是组成几何图形的基本元素(是几何图形);点动成线,线动成面,面动成体。
(2)展开与折叠:圆柱的侧面展开图是矩形;圆锥的侧面展开图是扇形;正方体展开六个面可用“1字型”、“z字型”模型认识。
(3)三视图:主视图(从正面看)、左视图(从左面看)、俯视图
(从上面看)。
----------4.2直线、射线、线段
1、特点与表示方法:
①直线没有端点,向两方无限延伸(不能用延长描述),可用两个大
写字母或小字字母表示;
②射线只有一个端点,向一方无限延伸,用端点和延伸方向中的任意
一点表示;端点相同,延伸方向相同的两条射线是同一条射线(两个相同)。
③线段有两个端点,可用两个大写字母或小字字母表示(不能延长)。
2、连接两点间的线段的长度,叫做这两点之间的距离。线段是图形,距离有大小。
3、经过两点有一条直线,并且只有一条直线。(两点确定一条直线)。
4、经过两点的所有连线中----------线段最短(两点之间,线段最短)
------------4.3线段的长短比较
①线段的比较:叠合法(线段上、线段的延长线上)或度量法。
②中点:将一条线段分成两条相等的线段的点称这条线段的中点。
③线段的和、差、倍、分(整体求部分,部分求整体)可以设未知数
④点在线段上、点在线段的延长线上、甚至在线段外。
-----------4.4角
1、定义:有公共端点的两条射线组成的图形叫角。角的端点为顶点,两条射线为角的两边(一条射线绕端点旋转后形成的图形)。
2、1°=60′1′=60″1周角=360度1平角=180度;
直角=90度;钟表上分针每分钟走6°,时针每分钟走0.5°。
3、度化为度、分、秒(整数不动,小数下放);度、分、秒化为度(逐级上调)。
4、度、分、秒的加、减、乘、除(余数下放)运算:对口(秒与秒、分与分、度与度)运算,满60进1,借1算60
-----------4.5角的比较与补(余)角
①角的比较:叠合法(在角的内部、在角的外部)或度量法。
②角的平分线:角平分线把一个角分成两个相等的角,角平分线是一条射线。
③如果两个角的和等于90度(直角),(∠⒈ ∠⒉=90°)就说这两个叫互为余角,即其中每一个角是另一个角的余角。(不要遗漏)。
④如果两个角的和等于180度(平角),(∠⒈ ∠⒉=180°)就说这两个叫互为补角,即其中每一个角是另一个角的补角(不要遗漏)。
⑤等角(同角)的补角相等。等角(同角)的余角相等。
⑥角的和、差、倍、分(角在角的内部、在角的外部)可以设未知数
⑦方位角:北偏东30o(就是从北望东旋转30o),西南方向:就是南偏西45o
--------------4.6用尺规作线段与角
1、尺规作图:几何中,通常用没有刻度的直尺和圆规来画图,这种画
图的方法叫做尺规作图
2、作一条线段等于已知线段:(1)作一条射线am(2)在射线am
上,以点a为圆心,以线段a的长度为半径画弧,交射线am于点b则
线段ab为所求作的线段
3、作一个角等于已知角:(1)在∠aob上以o为圆心,任意长为半径画弧,分别交oa、ob于点p、q
(2)作射线eg,并以点e为圆心,op长为半径画弧交eg于点d;
(3)以点d为圆心,pq长为半径画弧交第(2)步中所画弧于点f;
(4)作射线ef,∠def即为所求作的角
no.6 七年级上册数学复习资料-第6篇
①方程是含有未知数的等式。
②方程都只含有一个未知数(元)x,未知数x的指数都是1(次),这样的整式方程叫做一元一次方程。
③注意判断一个方程是否是一元一次方程要抓住三点:
1)未知数所在的式子是整式(方程是整式方程);
2)化简后方程中只含有一个未知数;(系数中含字母时不能为零)
3)经整理后方程中未知数的次数是1.
④解方程就是求出使方程中等号左右两边相等的未知数的值,这个值就是方程的解。方程的解代入满足,方程成立。
⑤等式的性质:
1)等式两边同时加上或减去同一个数或同一个式子(整式或分式),等式不变(结果仍相等)。a=b得:a (-)c=b (-)c
2)等式两边同时乘以或除以同一个不为零的数,等式不变。
a=b得:a×c=b×c或a÷c=b÷c(c≠0)
注意:运用性质时,一定要注意等号两边都要同时 、-、×、÷;运用性质2时,一定要注意0这个数。
⑥解一元一次方程一般步骤:
去分母(方程两边同乘各分母的最小公倍数)→去括号→移项→合并同类项→系数化1;
以上是解一元一次方程五个基本步骤,在实际解方程的过程中,五个
步骤不一定完全用上,或有些步骤还需要重复使用。因此,解方程时,
要根据方程的特点,灵活选择方法。在解方程时还要注意以下几点:
⑴去分母:在方程两边都乘以各分母的最小公倍数,不要漏乘不含
分母的项;分子是一个整体,去分母后应加上括号;
注意:去分母(等式的基本性质)与分母化整(分数的基本性质)是两个概念,不能混淆;
⑵去括号:遵从先去小括号,再去中括号,最后去大括号不要漏乘括号的项;不要弄错符号(连着符号相乘);
⑶移项:把含有未知数的项移到方程的一边,其他项都移到方程的另一边(以=为界限),移项要变号;
⑷合并同类项:不要丢项,解方程是同解变形,每一步都是一个方程,
不能像计算或化简题那样写能连等的形式。
⑸系数化1:(两边同除以未知数的系数)把方程化成ax=b(a≠0)
的形式,字母及其指数不变系数化成1在方程两边都除以未知数的系数a,得到方程的解不要分子、分母搞颠倒(一步一步来)
3.2一次方程的应用:
(一)、概念梳理
⑴列一元一次方程解决实际问题的一般步骤是:审题,特别注意关键的字和词的意义,弄清相关数量关系,注意单位统一,注意设未知数;
①解:设出未知数(注意单位),
②根据相等关系列出方程,
③解这个方程,
④答(包括单位名称,检验)。
⑵一些固定模型中的等量关系:
①数字问题:表示一个三位数,则有=100a 10b c(数位上的数字×位数)
②行程问题:基本公式:路程=时间×速度
甲乙同时相向行走相遇时:甲走的路程 乙走的路程=总路程
甲走的时间=乙走的时间;
甲乙同时同向行走追及时:甲走的路程-乙走的路程=甲乙之间距离
③工程问题(整体1):基本公式:工作量=工作时间×工作效率
各部分工作量之和=总工作量;
④储蓄问题:本息和=本金 利息;利息=本金×利率×时间
⑤商品销售问题:商品利润=售价-进价(成本价)
商品利润率=(售价-进价)/进价
⑥等积变形问题:面积或体积不变
⑦和、差、倍、分问题:多、少、几倍、几分之几
⑧按比例分配问题:一般设每份为x如:2:3:4为2x、3x、4x
⑨资源调配问题:资源、人员的调配(有时要间接设未知数)
(二)、思想方法(本单元常用到的数学思想方法小结)
⑴模型思想:通过对实际问题中的数量关系的分析,抽象成数学模型,建立一元一次方程的思想。
⑵方程思想:用方程解决实际问题的思想(如:按比例分配、线段的长、角的大小等)就是方程思想。
⑶转化(归纳)思想:解一元一次方程的过程,实质上就是利用去
分母、去括号、移项、合并同类项、未知数的系数化为1等各种同解变形,不断地用新的更简单的方程来代替原来的方程,最后逐步把方程转化为x=a的形式。体现了化“未知”为“已知”的化归思想。
⑷数形结合思想:如:数轴问题、在列方程解决行程问题时,借助
于线段示意图和图表等来分析数量关系,使问题中的数量关系很直
观地展示出来,体现了数形结合的优越性。
⑸分类(整体)思想:如:绝对值、偶次方、点在线段上(延长线
上、线段外)、角在角内(外)在解含字母系数的方程和含绝对值符
号的方程过程中往往需要分类讨论,在解有关方案设计的实际问题
的过程中往往也要注意分类思想在过程中的运用。
3.3二元一次方程组及其解法
①由两个一次方程组成的,并含有两个未知数的方程组叫做二元一次方程组
②消元法解方程组:
1、二元一次方程组的解:使二元一次方程组中每个方程都成立的两个未知数的值,叫做二元一次方程组的解(注意格式﹛)
2、代入消元法:从一个方程中求出某一个未知数的表达式,再把它“代入”另一个方程,进行求解,这种方法叫做代入消元法,简称代入法。
3、加减消元法:把两个方程的两边分别相加或相减(左边-左边=右边-右边)消去一个未知数的方法,叫做加减消元法,简称加减法(一定要使某个未知数的系数相等或相反)
_3.4二元一次方程组的应用
两个未知数,两个相等关系(见一次方程的应用)
no.7 七年级上册数学复习资料-第7篇
一、代数初步知识。
1、代数式:用运算符号“ -×÷……”连接数及表示数的字母的式子称为代数式(字母所取得数应保证它所在的式子有意义,其次字母所取得数还应使实际生活或生产有意义;单独一个数或一个字母也是代数式)
2、列代数式的几个注意事项:
(1)数与字母相乘,或字母与字母相乘通常使用“·”乘,或省略不写;
(2)数与数相乘,仍应使用“×”乘,不用“·”乘,也不能省略乘号;
(3)数与字母相乘时,一般在结果中把数写在字母前面,如a×5应写成5a;
(4)带分数与字母相乘时,要把带分数改成假分数形式,如a×应写成a;
(5)在代数式中出现除法运算时,一般用分数线将被除式和除式联系,如3÷a写成的形式;
(6)a与b的差写作a-b,要注意字母顺序;若只说两数的差,当分别设两数为a、b时,则应分类,写做a-b和b-a.
二、几个重要的代数式(m、n表示整数)。
(1)a与b的平方差是:a2-b2;a与b差的平方是:(a-b)2;
(2)若a、b、c是正整数,则两位整数是:10a b,则三位整数是:100a 10b c;
(3)若m、n是整数,则被5除商m余n的数是:5m n;偶数是:2n,奇数是:2n 1;三个连续整数是:n-1、n、n 1;
(4)若b>0,则正数是:a2 b,负数是:-a2-b,非负数是:a2,非正数是:-a2.
三、有理数。
1、有理数:
(1)凡能写成形式的数,都是有理数。正整数、0、负整数统称整数;正分数、负分数统称分数;整数和分数统称有理数。注意:0即不是正数,也不是负数;-a不一定是负数, a也不一定是正数;π不是有理数;
(2)有理数的分类:①②
(3)注意:有理数中,1、0、-1是三个特殊的数,它们有自己的特性;这三个数把数轴上的数分成四个区域,这四个区域的数也有自己的特性;
2、数轴:数轴是规定了原点、正方向、单位长度的一条直线。
3、相反数:
(1)只有符号不同的两个数,我们说其中一个是另一个的相反数;0的相反数还是0;
(2)注意:a-b c的相反数是-a b-c;a-b的相反数是b-a;a b的相反数是-a-b;
4、绝对值:
(1)正数的绝对值是其本身,0的绝对值是0,负数的绝对值是它的相反数;注意:绝对值的意义是数轴上表示某数的点离开原点的距离;
(2)绝对值可表示为:初一上册知识点绝对值的问题经常分类讨论;
(3)|a|是重要的非负数,即|a|≥0;注意:|a|·|b|=|a·b|,
5、有理数比大小:(1)正数的绝对值越大,这个数越大;(2)正数永远比0大,负数永远比0小;(3)正数大于一切负数;(4)两个负数比大小,绝对值大的反而小;(5)数轴上的两个数,右边的数总比左边的数大;(6)大数-小数>0,小数-大数<0.
四、有理数法则及运算规律。
(1)同号两数相加,取相同的符号,并把绝对值相加;
(2)异号两数相加,取绝对值较大的符号,并用较大的绝对值减去较小的绝对值;
(3)一个数与0相加,仍得这个数。
2、有理数加法的运算律:
(1)加法的交换律:a b=b a;(2)加法的结合律:(a b) c=a (b c)。
3、有理数减法法则:减去一个数,等于加上这个数的相反数;即a-b=a (-b)。
4、有理数乘法法则:
(1)两数相乘,同号为正,异号为负,并把绝对值相乘;
(2)任何数同零相乘都得零;
(3)几个数相乘,有一个因式为零,积为零;各个因式都不为零,积的符号由负因式的个数决定。
5、有理数乘法的运算律:
(1)乘法的交换律:ab=ba;(2)乘法的结合律:(ab)c=a(bc);
(3)乘法的分配律:a(b c)=ab ac.
6、有理数除法法则:除以一个数等于乘以这个数的倒数;注意:零不能做除数,。
7、有理数乘方的法则:
(1)正数的任何次幂都是正数;
no.8 七年级上册数学复习资料-第8篇
1、有理数:
(1)凡能写成 形式的数,都是有理数。正整数、0、负整数统称整数;正分数、负分数统称分数;整数和分数统称有理数。注意:0即不是正数,也不是负数;-a不一定是负数, a也不一定是正数;p不是有理数;
(2)有理数的分类: ① ②
2、数轴:
数轴是规定了原点、正方向、单位长度的一条直线。
3、相反数:
(1)只有符号不同的两个数,我们说其中一个是另一个的相反数;0的相反数还是0;
(2)相反数的和为0 ? a b=0 ? a、b互为相反数。
4、绝对值:
(1)正数的绝对值是其本身,0的绝对值是0,负数的绝对值是它的相反数;注意:绝对值的意义是数轴上表示某数的点离开原点的距离;
(2) 绝对值可表示为: 或 ;绝对值的问题经常分类讨论;
5、有理数比大小:
(1)正数的绝对值越大,这个数越大;(2)正数永远比0大,负数永远比0小;(3)正数大于一切负数;(4)两个负数比大小,绝对值大的反而小;(5)数轴上的两个数,右边的数总比左边的数大;(6)大数-小数 > 0,小数-大数 < 0.
6、互为倒数:
乘积为1的两个数互为倒数;注意:0没有倒数;若 a≠0,那么 的倒数是 ;若ab=1? a、b互为倒数;若ab=-1? a、b互为负倒数。
7、 有理数加法法则:
(1)同号两数相加,取相同的符号,并把绝对值相加;
(2)异号两数相加,取绝对值较大的符号,并用较大的绝对值减去较小的绝对值;
(3)一个数与0相加,仍得这个数。
8、有理数加法的运算律:
(1)加法的交换律:a b=b a ;(2)加法的结合律:(a b) c=a (b c)。
9、有理数减法法则:
减去一个数,等于加上这个数的相反数;即a-b=a (-b)。
10 有理数乘法法则:
(1)两数相乘,同号为正,异号为负,并把绝对值相乘;
(2)任何数同零相乘都得零;
(3)几个数相乘,有一个因式为零,积为零;各个因式都不为零,积的符号由负因式的个数决定。
11 有理数乘法的运算律:
(1)乘法的交换律:ab=ba;(2)乘法的结合律:(ab)c=a(bc);
(3)乘法的分配律:a(b c)=ab ac 。
12、有理数除法法则:
除以一个数等于乘以这个数的倒数;注意:零不能做除数, 。
13、有理数乘方的法则:
(1)正数的任何次幂都是正数;
(2)负数的奇次幂是负数;负数的偶次幂是正数;注意:当n为正奇数时: (-a)n=-an或(a -b)n=-(b-a)n , 当n为正偶数时: (-a)n =an 或 (a-b)n=(b-a)n 。
14、乘方的定义:
(1)求相同因式积的运算,叫做乘方;
(2)乘方中,相同的因式叫做底数,相同因式的个数叫做指数,乘方的结果叫做幂;
15、科学记数法:
把一个大于10的数记成a×10n的形式,其中a是整数数位只有一位的数,这种记数法叫科学记数法。
16、近似数的精确位:
一个近似数,四舍五入到那一位,就说这个近似数的精确到那一位。
17、有效数字:
从左边第一个不为零的数字起,到精确的位数止,所有数字,都叫这个近似数的有效数字。
18、混合运算法则:
先乘方,后乘除,最后加减。
no.9 七年级上册数学复习资料-第9篇
一、指导思想
1、把握新课标“以人为本”的基本思想,培养全面发展的人,提高学生的全面素质,掌握初中数学基础知识,切实提高学生的分析和解决问题的能力,运用教材编写的基本思路,系统地复习基础知识,同时不断整合知识体系,查缺补漏,不断完善,不断补充,使学生全面系统地掌握基本知识,提高知识运用能力。
2、“依人把本”的原则:复习要根据学生的现状,紧紧把握教材,把握新课标。复习不能离开教材,要完整整合教材内容,形成系统的知识体系,由浅入深,由易到难,循序渐进,让学生不断积累与深化。要认真分析学生心理和学生的学习现状,利用心理激励效应,让学生主动积极地投入到复习中,同时,要采用适当有效的复习方法,真正提高学生的学习成绩和智力。
3、“分层对待,梯次递进“的原则,考虑学生的现状,对不同程度的学生确立不同程度的目标,让每位学生都有复习的层次性目标,逐步实现一级一级的目标,这样所有的学生都能提高。
4、“重基础,提能力”的原则,抓住数学基础知识,注重能力的提高。复习不仅是一个整合知识、储备的过程,也是提高知识量,实现知识与能力的转化过程,在复习过程中,一定要注重基础,基础是“万木之根”,一切复习都要围绕基础进行。在抓基础的同时,不仅要学生牢固掌握基础知识,更应该实现能力的转化,这是复习的根本。在复习的设计与运行中,时刻要注意以提高学生数学能力为目标,依托此目标就有了一个核心,围绕核心复习就有了中心,有了中心,复习才会高效。
二、教材分析:
人教版《义务教育课程标准实验教科书·数学烛根据教育部制定的〈全日制义务教育数学课程标准(实验稿)〉编写的,内容包括:有理数;整式的加减;一元一次方程;图形认识初步。在体系结构的设计上办求反映这些内容之间的联系与综合,使它们成为一个有机的整体。其中对于“实验与综合应用”领域的内容,以“课题学习”和“数学活动”等形式分散地编排于各章之中。
在体例安排上有如下特点:
1、每章开始均配有反映本章主要内容的章前图和引言,可供学生预习用,也可作为教师导入新课的材料。
2、正文中设置了“思考”“探究”“归纳”等栏目,栏目中以问题、留白或填空等形式为学生提供思维发展、合作交流的空间。
3、适当安排了“阅读与思考”“观察与猜想”“实验与探究”“信息技术应用”等选学栏目,为加深对相关内容的认识,扩大学生的知识面,运用现代信息技术手段学习等提供资源。
3、每章安排了几个有一定综合性、实践性、开放性的“数学活动”,学生可以结合相关知识的学习或全章的复习有选择地进行活动,不同的学生可以达到不同层次的结果;“数学活动”也可供教师教学选用。
4、每章安排了“小结”,包括本章的知识结构图和对本章内容的回顾与思考。
5、本书的习题分为练习、习题、复习题三类,练习供课上使用,有些练习是对所学内容的巩固,有些练习是相关内容的延伸。
三、学情分析:本班学生整体学习素质较好,学生积极情较高。优秀生点20%,学困生有5名,大部分中等生学习态度较认真。学生学习兴趣随着内容不同而不同。大多数女生在计算上稍强一些,而一些男生在空间开形象感上稍强一些,所以,第一、二章的有理数和整式女生比较好,而第三、四章的列方程和图形认识初步男生则比较愿意学习一些。有一些学生在学习过程中,学得不扎实,基础知识掌握不牢,需要进一步温习与训练。在复习过程中,有些学生心理觉得是第二遍,有不重视的心理。在第一轮学习过程中,第一章的有效数字、科学计数法和正负数的计算学得不扎实;第二章整式的同类项合并上有一定的困难;第三章一元一次方程中,列方程解应用题学习不好,有些学生找不到题中的等量关系,列不出方程;第四章图形的认识中,对于余角和补角方面的计算有一些欠缺。
四、复习目标:针对全班的学习程度,初步把复习目标定为尽力提高全班学生学习成绩,让优生率达到30%,及格率达到70%,不同层次的学生设定不同的目标,把平均分提高到60分以上。全班学生90%能掌握基础知识,运用基础知识解决实际问题。
五、复习策略:“先分后总”的复习策略,先按章复习,后汇总复习;“边学边练”的策略,在复习知识的同时,紧紧抓住练这个环节;“环节检测”的策略,每复习一个环节,就检测一次,发现问题及时解决;“仿真模拟”的复习策略,在总复习中,进行几次仿真测试,来发现问题,并及时解决问题,促进学生学习质量的提高。及时“总结归纳”的策略,对于一个知识环节或相联系的知识点,要及时进行归纳与总结,让学生系统掌握知识,提高能力。
六、复习措施:
1、理清知识脉络:全书按四个环节处理,运用表格形式,把四章的内容并列展示出来,形成系统的知识表,理清各章知识之间的逻辑关系,形成一个清晰的知识脉络,便于学生系统掌握基础知识,把握全书的脉结构。
2、按章节串讲一遍:按全书的章节从前到后再认真解释一遍,在第一轮学习中,没有注视到的,和在学习练习中发现问题的知识环节要仔细地讲一篇,让学生形成更细的更准确的知识点。串讲时,采用边讲边提问的方式进行,这样有助于学生深入思考,认真记忆。必要时要学生做好笔记。
3、抓住重点习题:在串讲的每一个环节之后,一定要做些练习,在备课过程中,把书中或练习册中的重点练习加以强化,发现学生不懂的地方要反复训练,直到掌握为止。对于一些优生要给予较为有难度的练习,而对于一般的学生重点还是基础性的习题,做到“分层对应”,有针对性地复习。
4、章节小测:小测在复习中很有必要,能及时巩固复习知识,同时也是发现问题的重要手段,在每天个知识环节之后,都要进行小测,小测要有针对性,让学生掌握什么,掌握到什么程度,达到什么目标。对于一些难以掌握的知识点或一些掌握不好的学生要反复训练,直至掌握为止。
5、难点强化:难点是复习的重点,把书中的难点进行整合归类,通过专项训练和反复练习的方式,把难点的内容温习好。采用个别辅导的形式,对一些有难点的学习进行特殊的训练,特殊的要求,并把难点归类分析,形成习题进行强化性的复习。
6、专项训练:对于一些大部分学生掌握不好的知识点,采取专项讲解和专项训练的方式进行复习,讲解知识点,解答方法,进行专项的测试来完成专项复习的目的。
7、系统强化:主要是通过考试的形式来强化和巩固已学的知识点,整合全章的内容,全面系统地整合知识点,以上级考试文件为准绳,把握新课标,全面考查学生的知识水平,在测试中发现问题要重点进行讲解与训练。
复习是为了更有效地提高学生的知识,拓宽学生的视野,而并非为了考试,所以,复习要全面周到,既能突出重点,又能全面掌握数学基础知识,提高应用数学的能力。使学生在最短的时间内有效提高学习成绩。
no.10 七年级上册数学复习资料-第10篇
4、几何图形是由点、线、面构成的。
①几何体与外界的接触面或我们能看到的外表就是几何体的表面。几何的表面有平面和曲面;
②面与面相交得到线;
③线与线相交得到点。
5、棱:在棱柱中,任何相邻两个面的交线都叫做棱。
6、侧棱:相邻两个侧面的交线叫做侧棱,所有侧棱长都相等。
7、棱柱的上、下底面的形状相同,侧面的形状都是长方形。
8、根据底面图形的边数,人们将棱柱分为三棱柱、四棱柱、五棱柱、六棱柱……它们底面图形的形状分别为三边形、四边形、五边形、六边形……
9、长方体和正方体都是四棱柱。
10、圆柱的表面展开图是由两个相同的圆形和一个长方形连成。
11、圆锥的表面展开图是由一个圆形和一个扇形连成。
12、设一个多边形的边数为n(n≥3,且n为整数),从一个顶点出发的对角线有(n-3)条;可以把n边形成(n-2)个三角形;这个n边形共有条对角线。
13、圆上两点之间的部分叫做弧,弧是一条曲线。
14、扇形,由一条弧和经过这条弧的端点的两条半径所组成的图形。
15、凸多边形和凹多边形都属于多边形。有弧或不封闭图形都不是多边形。
第二章有理数及其运算
数轴的三要素:原点、正方向、单位长度(三者缺一不可)。
任何一个有理数,都可以用数轴上的一个点来表示。(反过来,不能说数轴上所有的点都表示有理数)
如果两个数只有符号不同,那么我们称其中一个数为另一个数的相反数,也称这两个数互为相反数。(0的相反数是0)
在数轴上,表示互为相反数的两个点,位于原点的侧,且到原点的距离相等。
数轴上两点表示的数,右边的总比左边的大。正数在原点的右边,负数在原点的左边。
绝对值的定义:一个数a的绝对值就是数轴上表示数a的点与原点的距离。数a的绝对值记作|a|。
正数的绝对值是它本身;负数的绝对值是它的数;0的绝对值是0。
或
绝对值的性质:除0外,绝对值为一正数的数有两个,它们互为相反数;
互为相反数的两数(除0外)的绝对值相等;
任何数的绝对值总是非负数,即|a|≥0
比较两个负数的大小,绝对值大的反而小。比较两个负数的大小的步骤如下:
①先求出两个数负数的绝对值;
②比较两个绝对值的大小;
③根据“两个负数,绝对值大的反而小”做出正确的判断。
绝对值的性质:
①对任何有理数a,都有|a|≥0
②若|a|=0,则|a|=0,反之亦然
③若|a|=b,则a=±b
④对任何有理数a,都有|a|=|-a|
有理数加法法则:①同号两数相加,取相同符号,并把绝对值相加。
②异号两数相加,绝对值相等时和为0;绝对值不等时取绝对值较大的数的符号,并用较大数的绝对值减去较小数的绝对值。
③一个数同0相加,仍得这个数。
加法的交换律、结合律在有理数运算中同样适用。
灵活运用运算律,使用运算简化,通常有下列规律:①互为相反的两个数,可以先相加;
②符号相同的数,可以先相加;
③分母相同的数,可以先相加;
④几个数相加能得到整数,可以先相加。
有理数减法法则:减去一个数,等于加上这个数的相反数。
有理数减法运算时注意两“变”:①改变运算符号;
②改变减数的性质符号(变为相反数)
有理数减法运算时注意一个“不变”:被减数与减数的位置不能变换,也就是说,减法没有交换律。
有理数的加减法混合运算的步骤:
①写成省略加号的代数和。在一个算式中,若有减法,应由有理数的减法法则转化为加法,然后再省略加号和括号;
②利用加法则,加法交换律、结合律简化计算。
(注意:减去一个数等于加上这个数的相反数,当有减法统一成加法时,减数应变成它本身的相反数。)
有理数乘法法则:①两数相乘,同号得正,异号得负,绝对值相乘。
②任何数与0相乘,积仍为0。
如果两个数互为倒数,则它们的乘积为1。(如:-2与、…等)
乘法的交换律、结合律、分配律在有理数运算中同样适用。
有理数乘法运算步骤:①先确定积的符号;
②求出各因数的绝对值的积。
乘积为1的两个有理数互为倒数。注意:
①零没有倒数
②求分数的倒数,就是把分数的分子分母颠倒位置。一个带分数要先化成假分数。
③正数的倒数是正数,负数的倒数是负数。
有理数除法法则:①两个有理数相除,同号得正,异号得负,并把绝对值相除。
②0除以任何非0的数都得0。0不可作为除数,否则无意义。
有理数的乘方
注意:①一个数可以看作是本身的一次方,如5=51;
②当底数是负数或分数时,要先用括号将底数括上,再在右上角写指数。
乘方的'运算性质:
①正数的任何次幂都是正数;
②负数的奇次幂是负数,负数的偶次幂是正数;
③任何数的偶数次幂都是非负数;
④1的任何次幂都得1,0的任何次幂都得0;
⑤-1的偶次幂得1;-1的奇次幂得-1;
⑥在运算过程中,首先要确定幂的符号,然后再计算幂的绝对值。
有理数混合运算法则:①先算乘方,再算乘除,最后算加减。
②如果有括号,先算括号里面的。
第三章字母表示数
代数式的概念:
用运算符号(加、减、乘除、乘方、开方等)把数与表示数的字母连接而成的式子叫做代数式。单独的一个数或一个字母也是代数式。
注意:①代数式中除了含有数、字母和运算符号外,还可以有括号;
②代数式中不含有“=、>、<、≠”等符号。等式和不等式都不是代数式,但等号和不等号两边的式子一般都是代数式;
③代数式中的字母所表示的数必须要使这个代数式有意义,是实际问题的要符合实际问题的意义。
代数式的书写格式:
①代数式中出现乘号,通常省略不写,如vt;
②数字与字母相乘时,数字应写在字母前面,如4a;
③带分数与字母相乘时,应先把带分数化成假分数后与字母相乘,如应写作;
④数字与数字相乘,一般仍用“×”号,即“×”号不省略;
⑤在代数式中出现除法运算时,一般按照分数的写法来写,如4÷(a-4)应写作;注意:分数线具有“÷”号和括号的双重作用。
⑥在表示和(或)差的代差的代数式后有单位名称的,则必须把代数式括起来,再将单位名称写在式子的后面,如平方米
代数式的系数:
代数式中的数字中的数字因数叫做代数式的系数。如3x,4y的系数分别为3,4。
注意:①单个字母的系数是1,如a的系数是1;
②只含字母因数的代数式的系数是1或-1,如-ab的系数是-1。a3b的系数是1
代数式的项:
代数式表示6x2、-2x、-7的和,6x2、-2x、-7是它的项,其中把不含字母的项叫做常数项
注意:在交待某一项时,应与前面的符号一起交待。
同类项:
所含字母相同,并且相同字母的指数也相同的项叫做同类项。
注意:①判断几个代数式是否是同类项有两个条件:a.所含字母相同;b.相同字母的指数也相同。这两个条件缺一不可;
②同类项与系数无关,与字母的排列顺序无关;
③几个常数项也是同类项。
合差同类项:
把代数式中的同类项合并成一项,叫做合并同类项。
①合并同类项的理论根据是逆用乘法分配律;
②合并同类项的法则是把同类项的系数相加,所得结果作为系数,字母和字母的指数不变。
注意:
①如果两个同类项的系数互为相反数,合并同类项后结果为0;
②不是同类项的不能合并,不能合并的项,在每步运算中都要写上;
③只要不再有同类项,就是最后结果,结果还是代数式。
根据去括号法则去括号:
括号前面是“ ”号,把括号和它前面的“ ”号去掉,括号里各项都不改变符号;括号前面是“-”号去掉,括号里各项都改变符号。
根据分配律去括号:
括号前面是“ ”号看成 1,括号前面是“-”号看成-1,根据乘法的分配律用 1或-1去乘括号里的每一项以达到去括号的目的。
注意:
①去括号时,要连同括号前面的符号一起去掉;
②去括号时,首先要弄清楚括号前是“ ”号还是“-”号;
③改变符号时,各项都变号;不改变符号时,各项都不变号。
第四章平面图形及位置关系
一。线段、射线、直线
1、正确理解直线、射线、线段的概念以及它们的区别:
名称图形表示方法端点长度
直线直线ab(或ba)
直线l无端点无法度量
射线射线om1个无法度量
线段线段ab(或ba)
线段l2个可度量长度
2、直线公理:经过两点有且只有一条直线。
二。比较线段的长短
1、线段公理:两点间线段最短;两之间线段的长度叫做这两点之间的距离。
2、比较线段长短的两种方法:
①圆规截取比较法;
②刻度尺度量比较法。
3、用刻度尺可以画出线段的中点,线段的和、差、倍、分;
用圆规可以画出线段的和、差、倍。
三。角的度量与表示
1、角:有公共端点的两条射线组成的图形叫做角;
这个公共端点叫做角的顶点;
这两条射线叫做角的边。
2、角的表示法:角的符号为“∠”
①用三个字母表示,如图1所示∠aob
②用一个字母表示,如图2所示∠b
③用一个数字表示,如图3所示∠1
④用希腊字母表示,如图4所示∠β
经过两点有且只有一条直线。
两点之间的所有连线中,线段最短。
两点之间线段的长度,叫做这两点之间的距离。
1=60’1’=60”
角也可以看成是由一条射线绕着它的端点旋转而成的。如图5所示:
一条射线绕它的端点旋转,当终边和始边成一条直线时,所成的角叫做平角。如图6所示:
终边继续旋转,当它又和始边重合时,所成的角叫做周角。如图7所示:
从一个角的顶点引出的一条射线,把这个角分成两个相等的角,这条射线叫做这个角的平分线。
经过直线外一点,有且只有一条直线与这条直线平行。
如果两条直线都与第三条直线平行,那么这两条直线互相平行。
互相垂直的两条直线的交点叫做垂足。
平面内,过一点有且只有一条直线与已知直线垂直。
如图8所示,过点c作直线ab的垂线,垂足为o点,线段co的长度叫做点c到直线ab的距离。
第五章一元一次方程
在一个方程中,只含有一个未知数x(元),并且未知数的指数是1(次),这样的方程叫做一元一次方程。
等式两边同时加上(或减去)同一个代数式,所得结果仍是等式。
等式两边同时乘同一个数(或除以同一个不为0的数),所得结果仍是等式。
解方程的步骤:解一元一次方程,一般要通过去分母、去括号、移项、合并同类项、未知数的系数化为1等几个步骤,把一个一元一次方程“转化”成x=m的形式。
第六章生活中的数据
科学记数法:一般地,一个大于10的数可以表示成a×10n的形式,其中1≤a<10,n是正整数,这种记数方法叫做科学记数法。
统计图的特点:
折线统计图:能够清晰地反映同一事物在不同时期的变化情况。
条形统计图:能够清晰地反映每个项目的具体数目及之间的大小关系。
扇形统计图:能够清晰地表示各部分在总体中所占的百分比及各部分之间的大小关系
统计图对统计的作用:
(1)可以清晰有效地表达数据。
(2)可以对数据进行分析。
(3)可以获得许多的信息。
(4)可以帮助人们作出合理的决策。